3.2 Fungsi CPU
Fungsi CPU adalah penjalankan program – program yang disimpan dalam memori utama
dengan cara mengambil instruksi – instruksi, menguji instruksi tersebut dan mengeksekusinya
satu persatu sesuai alur perintah.
Untuk memahami fungsi CPU dan caranya berinteraksi dengan komponen lain, perlu kita
tinjau lebih jauh proses eksekusi program. Pandangan paling sederhana proses eksekusi program
adalah dengan mengambil pengolahan instruksi yang terdiri dari dua langkah, yaitu : operasi
pembacaan instruksi (fetch) dan operasi pelaksanaan instruksi (execute). Siklus instruksi yang
terdiri dari siklus fetch dan siklus eksekusi diperlihatkan pada gambar 3.3 berikut.
3.2.1 Siklus Fetch - Eksekusi
Pada setiap siklus instruksi, CPU awalnya akan membaca instruksi dari memori. Terdapat
register dalam CPU yang berfungsi mengawasi dan menghitung instruksi selanjutnya, yang
disebut Program Counter (PC). PC akan menambah satu hitungannya setiap kali CPU membaca
instruksi.
Instruksi – instruksi yang dibaca akan dibuat dalam register instruksi (IR). Instruksi –
instruksi ini dalam bentuk kode – kode binner yang dapat diinterpretasikan oleh CPU kemudian
dilakukan aksi yang diperlukan. Aksi – aksi ini dikelompokkan menjadi empat katagori, yaitu :
• CPU – Memori, perpindahan data dari CPU ke memori dan sebaliknya.
• CPU –I/O, perpindahan data dari CPU ke modul I/O dan sebaliknya.
• Pengolahan Data, CPU membentuk sejumlah operasi aritmatika dan logika terhadap data.
• Kontrol, merupakan instruksi untuk pengontrolan fungsi atau kerja. Misalnya instruksi
pengubahan urusan eksekusi.
Perlu diketahui bahwa siklus eksekusi untuk suatu instruksi dapat melibatkan lebih dari sebuah
referensi ke memori. Disamping itu juga, suatu instruksi dapat menentukan suatu operasi I/O.
Perhatikan gambar 3.4 yang merupakan detail siklus operasi pada gambar 3.3, yaitu :
• Instruction Addess Calculation (IAC), yaitu mengkalkulasi atau menentukan alamat instruksi
berikutnya yang akan dieksekusi. Biasanya melibatkan penambahan bilangan tetap ke alamat
instruksi sebelumnya. Misalnya, bila panjang setiap instruksi 16 bit padahal memori memiliki
panjang 8 bit, maka tambahkan 2 ke alamat sebelumnya.
• Instruction Fetch (IF), yaitu membaca atau pengambil instruksi dari lokasi memorinya ke CPU.
• Instruction Operation Decoding (IOD), yaitu menganalisa instruksi untuk menentukan jenis
operasi yang akan dibentuk dan operand yang akan digunakan.
• Operand Address Calculation (OAC), yaitu menentukan alamat operand, hal ini dilakukan
apabila melibatkan referensi operand pada memori.
• Operand Fetch (OF), adalah mengambil operand dari memori atau dari modul I/O.
• Data Operation (DO), yaitu membentuk operasi yang diperintahkan dalam instruksi.
• Operand store (OS), yaitu menyimpan hasil eksekusi ke dalam memori.
3.2.2 Fungsi Interrupt
Fungsi interupsi adalah mekanisme penghentian atau pengalihan pengolahan instruksi
dalam CPU kepada routine interupsi. Hampir semua modul (memori dan I/O) memiliki
mekanisme yang dapat menginterupsi kerja CPU.
Tujuan interupsi secara umum untuk menejemen pengeksekusian routine instruksi agar
efektif dan efisien antar CPU dan modul – modul I/O maupun memori. Setiap komponen
komputer dapat menjalankan tugasnya secara bersamaan, tetapi kendali terletak pada CPU
disamping itu kecepatan eksekusi masing – masing modul berbeda sehingga dengan adanya
fungsi interupsi ini dapat sebagai sinkronisasi kerja antar modul. Macam – macam kelas sinyal
interupsi :
• Program, yaitu interupsi yang dibangkitkan dengan beberapa kondisi yang terjadi pada hasil
eksekusi program. Contohnya: arimatika overflow, pembagian nol, oparasi ilegal.
• Timer, adalah interupsi yang dibangkitkan pewaktuan dalam prosesor. Sinyal ini memungkinkan
sistem operasi menjalankan fungsi tertentu secara reguler.
• I/O, sinyal interupsi yang dibangkitkan oleh modul I/O sehubungan pemberitahuan kondisi error
dan penyelesaian suatu operasi.
• Hardware failure, adalah interupsi yang dibangkitkan oleh kegagalan daya atau kesalahan
paritas memori.
Dengan adanya mekanisme interupsi, prosesor dapat digunakan untuk mengeksekusi
instruksi – instruksi lain. Saat suatu modul telah selesai menjalankan tugasnya dan siap menerima
tugas berikutnya maka modul ini akan mengirimkan permintaan interupsi ke prosesor. Kemudian
prosesor akan menghentikan eksekusi yang dijalankannya untuk menghandel routine interupsi.
Setelah program interupsi selesai maka prosesor akan melanjutkan eksekusi programnya kembali.
Saat sinyal interupsi diterima prosesor ada dua kemungkinan tindakan, yaitu interupsi
diterima/ditangguhkan dan interupsi ditolak. Apabila interupsi ditangguhkan, prosesor akan
melakukan hal – hal dibawah ini :
1. Prosesor menangguhkan eksekusi program yang dijalankan dan menyimpan konteksnya.
Tindakan ini adalah menyimpan alamat instruksi berikutnya yang akan dieksekusi dan data lain
yang relevan.
2. Prosesor menyetel program counter (PC) ke alamat awal routine interrupt handler.
Untuk sistem operasi yang kompleks sangat dimungkinkan adanya interupsi ganda
(multiple interrupt). Misalnya suatu komputer akan menerima permintaan interupsi saat proses
pencetakan dengan printer selesai, disamping itu dimungkinkan dari saluran komunikasi akan
mengirimkan permintaan interupsi setiap kali data tiba. Dalam hal ini prosesor harus menangani
interupsi ganda.
Dapat diambil dua buah pendekatan untuk menangani interupsi ganda ini. Pertama adalah
menolak atau tidak mengizinkan interupsi lain saat suatu interupsi ditangani prosesor. Kemudian
setelah prosesor selesai menangani suatu interupsi maka interupsi lain baru di tangani.
Pendekatan ini disebut pengolahan interupsi berurutan / sekuensial. Pendekatan ini cukup baik
dan sederhana karena interupsi ditangani dalam ututan yang cukup ketat. Kelemahan pendekatan
ini adalah metode ini tidak memperhitungkan prioritas interupsi. Pendekatan ini diperlihatkan
pada gambar 3.6a.
Pendekatan kedua adalah dengan mendefinisikan prioritas bagi interupsi dan interrupt
handler mengizinkan interupsi berprioritas lebih tinggi ditangani terlebih dahulu. Pedekatan ini
disebut pengolahan interupsi bersarang.
Sebagai contoh untuk mendekatan bersarang, misalnya suatu sistem memiliki tiga
perangkat I/O: printer, disk, dan saluran komunikasi, masing – masing prioritasnya 2, 4 dan 5.
Pada awal sistem melakukan pencetakan dengan printer, saat itu terdapat pengiriman data pada
saluran komunikasi sehingga modul komunikasi meminta interupsi. Proses selanjutnya adalah
pengalihan eksekusi interupsi mudul komunikasi, sedangkan interupsi printer ditangguhkan. Saat
pengeksekusian modul komunikasi terjadi interupsi disk, namun karena prioritasnya lebih rendah
maka interupsi disk ditangguhkan. Setelah interupsi modul komunikasi selesai akan dilanjutkan
interupsi yang memiliki prioritas lebih tinggi, yaitu disk. Bila interupsi disk selesai dilanjutkan
eksekusi interupsi printer. Selanjutnya dilanjutkan eksekusi program utama.
Memori adalah bagian dari komputer tempat program – program dan data – data
disimpan. Bebarapa pakar komputer (terutama dari Inggris) menggunakan istilah store atau
storage untuk memori, meskipun kata storage sering digunakan untuk menunjuk ke penyimpanan
disket. Tanpa sebuah memori sebagai tempat untuk mendapatkan informasi guna dibaca dan
ditulis oleh prosesor maka tidak akan ada komputer – komputer digital dengan sistem
penyimpanan program.
Walaupun konsepnya sederhana, memori komputer memiliki aneka ragam jenis,
teknologi, organisasi, unjuk kerja dan harganya. Dalam bab ini akan dibahas mengenai memori
internal dan bab selanjutnya membahas memori eksternal. Perlu dijelaskan sebelumnya
perbedaan keduanya yang sebenarnya fungsinya sama untuk penyimpanan program maupun data.
Memori internal adalah memori yang dapat diakses langsung oleh prosesor. Sebenarnya terdapat
beberapa macam memori internal, yaitu register yang terdapat di dalam prosesor, cache memori
dan memori utama berada di luar prosesor. Sedangkan memori eksternal adalah memori yang
diakses prosesor melalui piranti I/O, seperti disket dan hardisk.
4.1 Operasi Sel Memori
Elemen dasar memori adalah sel memori. Walaupun digunakan digunakan sejumlah
teknologi elektronik, seluruh sel memori memiliki sifat – sifat tertentu :
• Sel memori memiliki dua keadaan stabil (atau semi-stabil), yang dapat digunakan untuk
merepresentasikan bilangan biner 1 atau 0.
• Sel memori mempunyai kemampuan untuk ditulisi (sedikitnya satu kali).
• Sel memori mempunyai kemampuan untuk dibaca.
Umumnya sel memori mempunyai tiga
terminal fungsi yang mampu membawa sinyal listrik. Terminal select berfungsi memilih operasi
tulis atau baca. Untuk penulisan, terminal lainnya menyediakan sinyal listrik yang men-set


1 komentar:
Posting Komentar